Existence of Traveling Waves in the Stokes-boussinesq System for Reactive Flows

نویسنده

  • MARTA LEWICKA
چکیده

We consider the Stokes-Boussinesq equations in a slanted (that is, not aligned with gravity’s direction) cylinder of any dimension and with an arbitrary Rayleigh number. We prove the existence of a non-planar traveling wave solution, propagating at a constant speed, and satisfying the Dirichlet boundary condition in the velocity and the Neumann condition in the temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traveling Waves of Some Symmetric Planar Flows of Non-Newtonian Fluids

We present some variants of Burgers-type equations for incompressible and isothermal planar flow of viscous non-Newtonian fluids based on the Cross, the Carreau and the power-law rheology models, and on a symmetry assumption on the flow. We numerically solve the associated traveling wave equations by using industrial data and in order to validate the models we prove existence and uniqueness of ...

متن کامل

Traveling Waves in 2d Reactive Boussinesq Systems with No-slip Boundary Conditions

We consider systems of reactive Boussinesq equations in two dimensional strips that are not aligned with gravity’s direction. We prove that for any width of such strips and for arbitrary Rayleigh and Prandtl numbers, the systems admit smooth, non-planar traveling wave solutions with the fluid’s velocity satisfying no-slip boundary conditions.

متن کامل

On the Existence of Traveling Waves in the 3d Boussinesq System

We extend earlier work on traveling waves in premixed flames in a gravitationally stratified medium, subject to the Boussinesq approximation. For threedimensional channels not aligned with the gravity direction and under the Dirichlet boundary conditions in the fluid velocity, it is shown that a non-planar traveling wave, corresponding to a non-zero reaction, exists, under an explicit condition...

متن کامل

Existence and Stability of Traveling Waves for a Class of Nonlocal Nonlinear Equations

In this article we are concerned with the existence and orbital stability of traveling wave solutions of a general class of nonlocal wave equations: utt − Luxx = B(±|u|u)xx, p > 1. The main characteristic of this class of equations is the existence of two sources of dispersion, characterized by two coercive pseudo-differential operatorsL and B. Members of the class arise as mathematical models ...

متن کامل

Rigorous derivation of the anelastic approximation to the Oberbeck-Boussinesq equations

It is shown that the anelastic Oberbeck-Boussinesq system is a small Mach, small Péclet and small Froude number limit of the complete Navier-Stokes-Fourier system for gases with large specific heat at constant volume. This result is obtained on an arbitrary large time interval. The proof allows an intrinsic view into the process of separation of fast oscillating acoustic waves, governed by a Li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006